Suitability of Integral Horsepower (IHP)* Motors on Variable Frequency Drives

Variable Frequency Drives (VFD)
All Nidec Motor Corporation inverter duty motors have 40°C ambient, 1.0 SF on Inverter Power, 3300 ft. max altitude, 460 voltage or less line power, up to 10:1 speed range on Variable Torque and Class F Insulation.

Nidec Motor Corporation’s INVERTER GRADE® insulated motors exceeded NEMA® MG-1 Part 30 & 31 before the standards were established.

We are a leader in the development of electric motors to withstand pulse width modulated (PWM) drives evolution from power transistors to higher switching frequency insulated gate bipolar transistors (IGBTs).

Today, as the need for medium duty motor inverter applications grow, Nidec Motor Corporation provides products to meet these demands.

Through continued research and development, Nidec Motor Corporation has included the insulation wire from its INVERTER GRADE® motors in all Premium Efficient motors, enhancing their potential inverter compatibility.

Inverter compatibility with motors is complex. As a result, many variables must be considered when determining the suitability of certain types of motors. These variables include:

- Torque requirements (Constant or Variable)
- Speed Range
- Line/System Voltage
- Cable Length between VFD & Motor
- Drive Switching (Carrier) Frequency Motor Construction
- VFD dv/dt
- High Temperatures High Humidity

Wider speed ranges, higher voltages, higher switching frequencies and increased cable lengths all add to the severity of the application and therefore the potential for premature motor failure. Nidec Motor Corporation has differentiated its products into families for your ease of selection for various inverter applications.

Warranty Guidelines
The information within this section refers to the motor and drive application guidelines and limitations for warranty.

Hazardous Location Motors
Use of a variable frequency drive with the motors in this catalog, intended for use in hazardous locations, is only approved for Division 1, Class I, Group D hazardous location motors with a T2B temperature code, with a limitation of 2:1 constant torque or 10:1 variable torque output. No other stock hazardous location motors are inherently suitable for operation with a variable frequency drive. If other requirements are needed, including non-listed Division 2, please contact your Nidec Motor Corporation territory manager to conduct an engineering inquiry.

575 Volt Motors
575 volt motors can be applied on inverters when output filters are used.

Applying INVERTER GRADE® Insulated Motors on Variable Frequency Drives (2, 4, 6 pole)
The products within this catalog labeled “Inverter Duty” or “Vector Duty” are considered INVERTER GRADE® insulated motors. INVERTER GRADE® motors exceed the NEMA® MG-1 Part 31 standard.

Nidec Motor Corporation provides a three-year limited warranty on all NEMA® frame INVERTER GRADE® insulated motors and allows long cable runs between the motor and the VFD (limited to 400 feet typical without output filters). Cable distance can be further limited by hot and humid environments and VFD manufacturers cable limits. These motors may be appropriate for certain severe inverter application or when the factors relating to the end use application are undefined (such as spares).

Nidec Motor Corporation’s U.S. Motors® brand is available in the following INVERTER GRADE® insulated motors:

- Inverter Duty NEMA® frame motors good for 10:1 Variable Torque & 5:1 Constant Torque, including Vertical Type RUSI
- Inverter Duty motors rated for 10:1 Constant Torque
- ACCU-Torq® and Vector Duty Motors with full torque to 0 Speed
- 841 Plus® NEMA® Frame Motors

Applying motors that do not have INVERTER GRADE® insulation on Variable Frequency Drives (2, 4, 6 pole)
Meet NEMA® MG-1, Section IV, Part 31.4.4.2. They can be used with adjustable frequency drives under the following parameters:

On NEMA® frame motors, 10:1 speed rating on variable torque loads & 4:1 speed range on constant torque loads. On TITAN® frame motors, 10:1 speed rating on variable torque loads. On TITAN® frame motors, inquiry required for suitability on constant torque loads. Cable distances are for reference only and can be further limited by hot and humid environments. Refer to specific VFD manufacturers cable limits.

<table>
<thead>
<tr>
<th>Cable Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Cable Distance VFD to Motor</td>
</tr>
<tr>
<td>Switching Frequency</td>
</tr>
<tr>
<td>3 Khz</td>
</tr>
<tr>
<td>6 Khz</td>
</tr>
<tr>
<td>9 Khz</td>
</tr>
<tr>
<td>12 Khz</td>
</tr>
<tr>
<td>15 Khz</td>
</tr>
<tr>
<td>20 Khz</td>
</tr>
</tbody>
</table>

Applying Standard & Energy Efficient Motors on Variable Frequency Drives is not recommended. VFD related failures on standard and energy efficient motors 444 frame and above will not be covered under warranty.
Motor / Inverter Compatibility

Thermal Overloads and Single Phase Motors

Motors with thermal overloads installed may not operate properly on a VFD. The current carrying thermal overload is designed for sine wave power. Operation on a VFD may cause nuisance tripping or potentially not protect the motor as would be expected on line power. Thermo-stats or thermistors installed in the motor and connected properly to the VFD may provide suitable thermal overload protection when operating on a VFD. (Consult Codes)

Single phase motors and other fractional horsepower ratings are not designed to be operated on a VFD. Within Nidec Motor Corporation standard products, all motors NEMA® 48 frame (5.5" diameter) and smaller are not suitable for VFD applications. Three phase 56 and 143/145 frame applications should be noted on the catalog price page; or if in doubt ask an Nidec Motor Corporation technical representative for recommendations on compatibility with a VFD.

Slow Speed Motors

Motors with a base design of slower than six poles require special consideration regarding VFD sizing and minimizing harmonic distortion created at the motor terminals due to cable installation characteristics. Additional external PWM waveform filters and shielded motor cables designed for PWM power may be required to provide acceptable motor life. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%).

690V Applications

Motors that will be applied to 690VAC PWM VFDs require the use of an external filter to limit peak voltage spikes and the use of an INVERTER GRADE® motor. Where available, an alternative to using an output filter is to upgrade to a 2300V insulation system.

Low Voltage TITAN® Motors

When using 449 frame and larger motors on PWM type VFDs consider the use of an external filter and shielded motor cables designed for PWM power to minimize harmonic distortion and peak voltages at the motor terminals. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%).

Bearing Currents related to PWM waveform

Due to the uniqueness of this condition occurring in the field, protection of the motor bearings from shaft currents caused by common mode voltages is not a standard feature on sine wave or Inverter Duty motor products, unless explicitly noted. Some installations may be prone to a voltage discharge condition through the motor bearings called fluting.

Fluting damage is related to characteristics of the PWM waveform, VFD programming and characteristics and installation.

Bearing fluting as a result of VFD waveform characteristics may be prevented by the installation of a shaft grounding device such as a brush or ring and/or correction of the installation characteristics causing the shaft voltage condition. Insulated bearing(s) may be required. VFD filters may be needed if bearing fluting is to be avoided.

Multiple Motors on a Single VFD

Special considerations are required when multiple motors are powered from a single VFD unit. Most VFD manufacturers can provide guidelines for proper motor thermal considerations and starting/stopping of motors. Cable runs from the VFD and each motor can create conditions that will cause extra stress on the motor winding. Filters may be required at the motor to provide maximum motor life.

Grounding and Cable Installation Guidelines

Proper output winding and grounding practices can be instrumental in minimizing motor related failures caused by PWM waveform characteristics and installation factors. VFD manufacturers typically provide detailed guidelines on the proper grounding of the motor to the VFD and output cable routing. Cabling manufacturers provide recommended cable types for PWM installations and critical information concerning output wiring impedance and capacitance to ground.

Vertical Motors on VFDs

Vertical motors operated on VFD power present unique conditions that may require consideration by the user or installation engineer.

- Non-reversing-ratchet operation can interfere at low speeds (up to 300 RPM) causing locked rotor and drive tripping.
- Unexpected / unacceptable system vibration and or noise levels caused by the torque pulsation characteristics of the PWM waveform, a system critical frequency falling inside the variable speed range of the process or the added harmonic content of the PWM waveform exciting a system component
- Application related problems related to the controlled acceleration/deceleration and torque of the motor on VFD power and the building of system pressure/load.
- The impact the reduction of pump speed has on the down thrust reflected to the pump motor and any minimum thrust requirements of the motor bearings
- Water hammer during shutdown damaging the non-reversing ratchet

Humidity and Non-operational Conditions

The possible build-up of condensation inside the motor due to storage in an uncontrolled environment or non-operational periods in an installation, can lead to an increased rate of premature winding or bearing failures when combined with the stresses associated with PWM waveform characteristics. Moisture and condensation in and on the motor winding over time can provide tracking paths to ground, lower the Megohm resistance of the motor winding to ground, and lower the Corona Inception Voltage level of the winding.

Proper storage and maintenance guidelines are important to minimize the potential of premature failures. Space heaters or trickle voltage heating methods are the preferred methods for drying out a winding that has low megohm readings. Damage caused by these factors are not covered by the limited warranty provided unless appropriate heating methods are properly utilized during non-operational periods and prior to motor start-up.

NEMA® Application Guide for AC Adjustable Speed Drive Systems: http://www.nema.org/standards/acadjustable.cfm#download

*This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL® & CSA® listings where indicated.

† All marks shown within this document are properties of their respective owners.